- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Forrest, Ben (2)
-
Rescigno, Umberto (2)
-
Vulcani, Benedetta (2)
-
Wilson, Gillian (2)
-
Ahad, Syeda_Lammim (1)
-
Bahé, Yannick (1)
-
Bahé, Yannick M. (1)
-
Balogh, Michael (1)
-
Balogh, Michael L. (1)
-
Baxter, Devontae C. (1)
-
Baxter, Devontae_C (1)
-
Cerulo, Pierluigi (1)
-
Cooper, M. C. (1)
-
Cooper, M_C (1)
-
De Lucia, Gabriella (1)
-
Demarco, Ricardo (1)
-
Fontanot, Fabio (1)
-
Gully, Harry (1)
-
Hatch, Nina (1)
-
Hirschmann, Michaela (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Understanding the processes that transform star-forming galaxies into quiescent ones is key to unravelling the role of environment in galaxy evolution. We present measurements of the luminosity functions (LFs) and stellar mass functions (SMFs) of passive red-sequence galaxies in four galaxy clusters at $0.8 < z < 1.3$, selected using deep Very Large Telescope (VLT) observations complemented with data from the Gemini CLuster Astrophysics Spectroscopic (GCLASS) and Gemini Observations of Galaxies in Rich Early ENvironments (GOGREEN) surveys. We find a significant enhancement in the abundance of faint/low-mass passive galaxies in both the LFs and SMFs of all four clusters compared to the field. This is further evidenced by a shallower low-mass slope in the composite passive cluster SMF, which yields a Schechter parameter $$\alpha = -0.54^{+\, 0.03}_{-0.03}$$, compared to $$\alpha = 0.12^{+\, 0.01}_{-0.01}$$ for the field. Our findings indicate that quenching processes that act in clusters are enhanced compared to the field, suggesting that environmental quenching mechanisms may already be active by $$z\sim 1$$. To reproduce the observed passive cluster SMF, we estimate that $$25\pm 5~{{\ \rm per\ cent}}$$ of the star-forming field population that falls into the cluster must have been quenched. Our results largely support traditional quenching models but highlight the need for deeper studies of larger cluster samples to better understand the role of environmental quenching in the distant Universe.more » « less
-
Xie 谢, Lizhi 利智; De Lucia, Gabriella; Fontanot, Fabio; Hirschmann, Michaela; Bahé, Yannick M.; Balogh, Michael L.; Muzzin, Adam; Vulcani, Benedetta; Baxter, Devontae C.; Forrest, Ben; et al (, The Astrophysical Journal Letters)Abstract Many quiescent galaxies discovered in the early Universe by JWST raise fundamental questions on when and how these galaxies became and stayed quenched. Making use of the latest version of the semianalytic model GAEA that provides good agreement with the observed quenched fractions up toz∼ 3, we make predictions for the expected fractions of quiescent galaxies up toz∼ 7 and analyze the main quenching mechanism. We find that in a simulated box of 685 Mpc on a side, the first quenched massive (M⋆∼ 1011M⊙), Milky Way–mass, and low-mass (M⋆∼ 109.5M⊙) galaxies appear atz∼ 4.5,z∼ 6.2, and beforez= 7, respectively. Most quenched galaxies identified at early redshifts remain quenched for more than 1 Gyr. Independently of galaxy stellar mass, the dominant quenching mechanism at high redshift is accretion disk feedback (quasar winds) from a central massive black hole, which is triggered by mergers in massive and Milky Way–mass galaxies and by disk instabilities in low-mass galaxies. Environmental stripping becomes increasingly more important at lower redshift.more » « less
An official website of the United States government
